

Decarbonizing industrial heat cost-effectively

Who needs industrial heat?

Steam

- → Chemicals
- ↓ Paper
- → Mining

Drying

- → Food
- → Minerals
- → Chemicals

Cement, Metals, Glass

Industrial heat is a major polluter

Industrial heat represents ~22% of worldwide CO₂ emissions

Source: https://doi.org/10.1016/J.JOULE.2020.12.007

Today, decarbonizing industrial heat is expensive

Heat cost

Natural Green electricity Green electricity + resistor + heat pump gas $\langle \rangle = []$ 4 = ₩1 Heat pumps can provide cheap, carbonfree heat **\$7**/ MWhth \$10 / MWhth \$20 / MWhth

But existing heat pumps have limitations

Existing high temperature heat pumps Max Temperature 160°C 80°C Max lift OPEX \$\$\$

Airthium opens up the TAM with 5x higher temperature lift support

	Existing HT Heat Pumps	Airthium HT Heat Pump
Max Temperature	160°C	550°C
Max lift	80°C	500°C
OPEX	\$\$\$	\$
TAM*	\$17B	\$30B

* Our 160-550°C segment is 17% of the worldwide industrial heat market Source: <u>https://www.iea.org/data-and-statistics/charts/industrial-heat-demand-by-temperature-range-2018</u>

Our technology

01.

Stirling engine (fluid = helium)

→ T = 100-550°C, Load following, batch processes

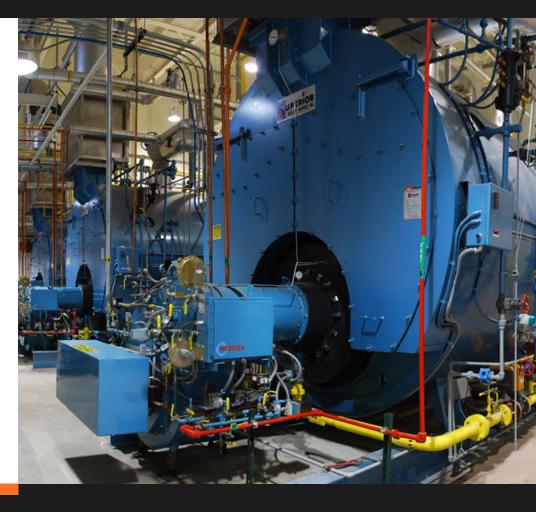
Fast near-isothermal compression

→ COP up to 3.5

03.

02.

No sliding/rotating seals


→ 5x less maintenance

Case study 1: Airthium's Heat Pump vs Electric Boiler

Heat source = Waste heat at ~60°C

Heat supply = Steam at 180°C

COP up to 2.3 = 2.3x more efficient Up to 57% electricity saving vs resistive boiler

Case study 2: Airthium's Heat Pump vs Electric Hot Air Generator

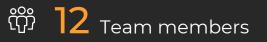
Heat source = Waste heat at ~60°C

Heat supply = air at 200°C

COP up to 2.1 = 2.1x more efficient Up to 53% electricity saving vs resistive HAG

Competition

Technology	Rankine HTHP	Stirling	Mechanical Vapor Recompression	Solar Thermal	Biofuels	AIRTHIUM
	100	100	275	(00)	F00	
Max temp (°C)	160	180	275	400	500	550
Reliability	\$\$\$	\$\$\$	\$	\$	\$	\$
Efficiency	++	+	++++	+++	+++	+++
Lift (°C)	80	150	30	400	500	500
Cost	\$\$	\$\$\$	\$	\$\$\$	\$\$\$	\$
TRL	9	7	9	9	9	4


Go to Market Strategy

Airthium

Provides control software & collects customer data and usage patterns

The Airthium team

Andrei KLOCHKO CEO/CSO, Co-founder

Ph. D. plasma physics, Ecole Polytechnique

Franck LAHAYE

Ex-Sales Director EMEA, Intelsat. Entrepreneur

Gaetan LERISSON CTO

Ph.D., Post-doc fluid mechanics, EPFL

4 Engineers1 Scientist3 Sim. Eng.1 admin

6 PhDs in the team

Jonathan HOWES Technical Advisor

Former CTO Isentropic Ltd. (2004-2016)

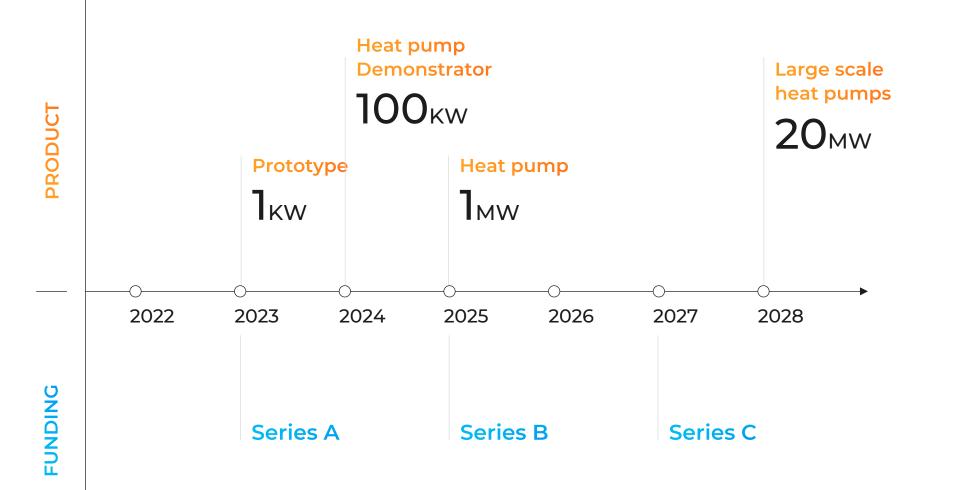
Jerome PECRESSE Business Advisor

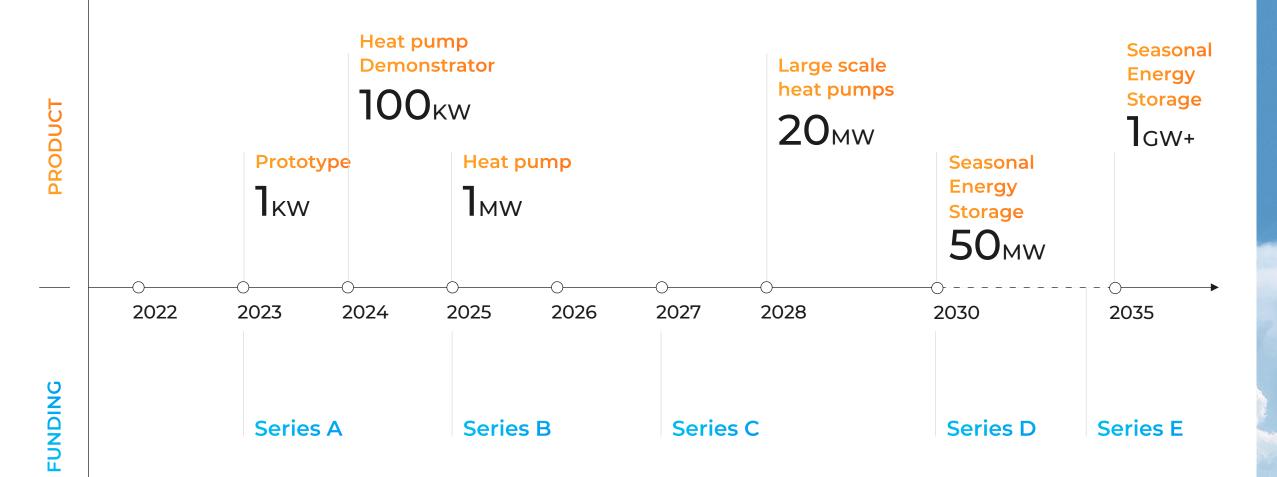
CEO GE Renewable Energy

Philippe KAVAFYAN Business Advisor

CEO Aker Offshore Wind

Alex RAGUET Finance Advisor


President French Tech Austin


Our history

2016	2017	2019	2021
Founded	Y Combinator Pre-seed round	Hosted by Air Liquide	Seed round \$1.3M raised
ZODIAC CONSPACE			ľ
Arcelor Mittal	Υ	Air Liquide	WEFUNDER wefunder.com/airthium

Our vision

Our vision

Stirling engine for Seasonal electricity storage

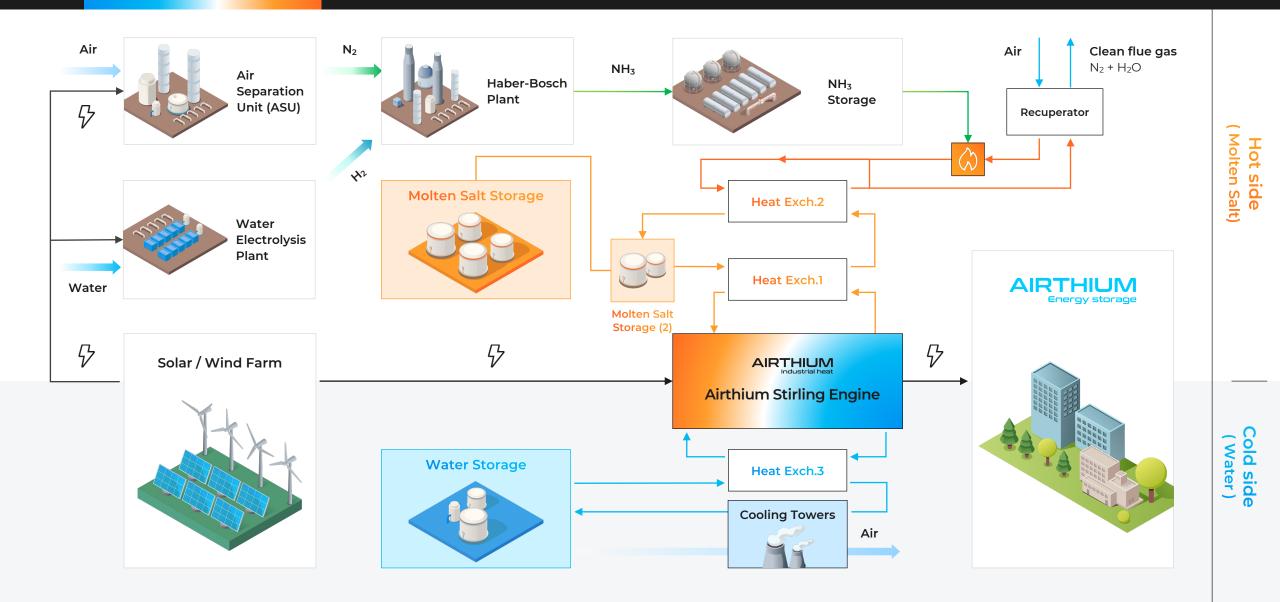
Same Engine

→ Our Stirling engine will be scaled up

Thousands of hours of storage, anywhere

02.

01.


→ Using green ammonia and thermal storage

100x cheaper than lithium-ion

03.

→ \$2/kWh capital cost

Stirling engine for Seasonal electricity storage

AIRTHUM Industrial heat

Ì

Decarbonizing industrial heat production cost-effectively

Ē

Heat pumps supplying 100°C to 550°C, unlocking a \$13B/year market for the first time

Invest now on wefunder.com/airthium